N24A-T015 TITLE: Polarization-enhanced, Long-range, Wide-area, High-resolution Imaging System
OUSD (R&E) CRITICAL TECHNOLOGY AREA(S): Directed Energy (DE); Integrated Sensing and Cyber; Trusted AI and Autonomy
OBJECTIVE: Develop polarization-based techniques to improve target detection and identification and scene clutter characterization at long-range and over a wide field-of-view.
DESCRIPTION: Detection and identification of small targets at long range on the ocean surface is challenging due to wave clutter, reduced observation time from shadowing, and often poor target contrast. To enhance target detection and identification, the USN seeks to exploit the additional information content provided by polarization. Specifically, 3D polarization imaging has improved significantly in recent years as multiple strategies have been developed to resolve the polar and azimuthal angular ambiguities [Ref 1]. Measurement of polarization often provides increased discrimination of man-made objects from nature backgrounds, while the 3D variant could increase the likelihood of positive identification. Moreover, many new polarization-based techniques have been developed in recent years that could significantly increase performance over the conventional Stokes vector analysis, which alone often yields favorable results, but only for specific applications.
Within the scope of this STTR topic, the USN seeks to develop a 3D polarization imaging system to significantly improve long-range detection and identification of targets in maritime clutter from surface-ship platforms. In principle, all wavelength bands from the UV to mm-wave will be considered, although transmission and depolarization with passage through the atmosphere in the maritime environment should be considered. Novel polarization techniques, such as point-spread-function engineering [Ref 2] or speckle correlation [Ref 3], which could potentially improve depth resolution or sampling rate, are also of interest. The use of multi-point correlation functions, such as the complex degree of mutual polarization [Ref 4] or other polarization correlation functions, would be of interest if these techniques can be used to enhance target identification or discrimination in clutter. In addition to the development of imager hardware, a processing component can be anticipated, which could exploit local measurements of the environment, such as ocean wave power spectra or the air-sea temperature jump, to enable optimization of data acquisition and interpretation [Ref 5].
PHASE I: Develop a preliminary design of hardware and algorithms for a novel polarization-based imaging and sensing system that significantly exceeds the current state-of-the-art and enables improved detection and ID of small targets in a maritime environment at ranges beyond 1 km. Targets of shorter range are not of interest under this topic. Additionally, proposed solutions can explore polarization techniques combined with other techniques to further augment 3D image formation. The design should be supported by ample modelling and simulation results to justify construction in Phase II and by risk mitigation experiments as needed.
PHASE II: Develop a hardware/software realization of the design proposed under Phase I. Laboratory based testing should be completed under the Phase II effort to demonstrate the performance of the system.
PHASE III DUAL USE APPLICATIONS: Refine the design of improved ruggedness, size, weight, and power needs to broadly enable use of the system. Produce a sufficiently rugged system to enable field testing under relevant maritime conditions.
REFERENCES:
KEYWORDS: infrared imaging; polarization; polarimetric imaging; infrared; IR; electro-optical/infrared; EO/IR; maritime sensing
** TOPIC NOTICE ** |
The Navy Topic above is an "unofficial" copy from the Navy Topics in the DoD 24.A STTR BAA. Please see the official DoD Topic website at www.defensesbirsttr.mil/SBIR-STTR/Opportunities/#announcements for any updates. The DoD issued its Navy 24.A STTR Topics pre-release on November 28, 2023 which opens to receive proposals on January 3, 2024, and now closes February 21, (12:00pm ET). Direct Contact with Topic Authors: During the pre-release period (November 28, 2023 through January 2, 2024) proposing firms have an opportunity to directly contact the Technical Point of Contact (TPOC) to ask technical questions about the specific BAA topic. Once DoD begins accepting proposals on January 3, 2024 no further direct contact between proposers and topic authors is allowed unless the Topic Author is responding to a question submitted during the Pre-release period. SITIS Q&A System: After the pre-release period, until January 24, 2023, at 12:00 PM ET, proposers may submit written questions through SITIS (SBIR/STTR Interactive Topic Information System) at www.dodsbirsttr.mil/topics-app/ by logging in and following instructions. In SITIS, the questioner and respondent remain anonymous but all questions and answers are posted for general viewing. Topics Search Engine: Visit the DoD Topic Search Tool at www.dodsbirsttr.mil/topics-app/ to find topics by keyword across all DoD Components participating in this BAA.
|