DIRECT TO PHASE II - DIGITAL ENGINEERING - Improved Fiber Laser for Spectral Beam Combination

Navy SBIR 23.1 - Topic N231-D01
NAVAIR - Naval Air Systems Command
Pre-release 1/11/23   Opens to accept proposals 2/08/23   Closes 3/08/23 12:00pm ET    [ View Q&A ]

N231-D01   TITLE: DIRECT TO PHASE II - DIGITAL ENGINEERING - Improved Fiber Laser for Spectral Beam Combination

OUSD (R&E) CRITICAL TECHNOLOGY AREA(S): Directed Energy (DE)

OBJECTIVE: Develop a robust, spectrally stabilized, continuous wave fiber-laser system with < 15 GHz spectral bandwidth that is free from stimulated Brillouin scattering and thermal mode instability at kW power levels.

DESCRIPTION: Fiber-laser sources are highly desired for high-energy laser (HEL) applications due to their compactness and robustness. The performance of high-power fiber lasers is hindered by two instabilities: stimulated Brillouin scattering (SBS) and thermal mode instability (TMI). SBS manifests as a reduction of output power coincident with a large backward propagating power that damages upstream components causing catastrophic failure. TMI manifests as significantly degraded beam quality, reducing power on target and HEL lethality.

Increasing HEL power requires combination of multiple beams through either spectral or coherent combination. Spectral beam combination (SBC) is viewed as the next step in fieldable laser weapons with significantly increased power levels and range. SBC requires that each source be a specific and separate wavelength with a sufficiently narrow bandwidth to allow dense spectral packing of sources and mitigate spectral beam dispersion. However, techniques to mitigate SBS and TMI instabilities for scaling to multi-kW powers from a single fiber-laser source element require broadened spectral linewidths that are far beyond SBC requirements.

New fiber-laser systems are required that can overcome these limitations. Most current solutions for mitigating SBS and TMI are extrinsic, requiring additional subsystems and controls that add complexity and increase the number of failure modes of the system. Intrinsic mitigation methods are fewer but tend not to lead to additional failure modes.

In addition to overcoming both SBS and TMI, the desired fiber laser should be able to cover the 40 nm bandwidth in the ytterbium doped fiber spectrum, with an individual channel spectral bandwidth of < 15 GHz and less than 1% of the power outside the spectral band. Center wavelength long-term stability should be less than 50 MHz. Output power should be > 1 kW with high beam quality of M2 < 1.3.

PHASE I: For a Direct to Phase II topic, the Government expects that the small business would have accomplished the following in a Phase I-type effort and developed a concept for a workable prototype or design to address, at a minimum, the basic requirements of the stated objective above. The below actions would be required in order to satisfy the requirements of Phase I:

� Provide a conceptual solution that is suitable for conventional spectral beam combining that can meet the stated requirements.

� Modeling and/or results of risk reduction experiments that validate the concept should be provided, along with a preliminary failure mode and effects analysis (FMEA).

 

FEASIBILITY DOCUMENTATION: Offerors interested in participating in Direct to Phase II must include in their response to this topic Phase I feasibility documentation that substantiates the scientific and technical merit and Phase I feasibility described in Phase I above has been met (i.e., the small business must have performed Phase I-type research and development related to the topic NOT solely based on work performed under prior or ongoing federally funded SBIR/STTR work) and describe the potential commercialization applications. The documentation provided must validate that the proposer has completed development of technology as stated in Phase I above. Documentation should include all relevant information including, but not limited to: technical reports, test data, prototype designs/models, and performance goals/results. Work submitted within the feasibility documentation must have been substantially performed by the offeror and/or the principal investigator (PI). Read and follow all of the DON SBIR 22.2 Direct to Phase II Broad Agency Announcement (BAA) Instructions. Phase I proposals will NOT be accepted for this topic.

PHASE II: Develop and optimize an innovative prototype fiber-laser system suitable for conventional spectral beam combining that can demonstrate the following requirements:

(a) high optical output power > 1 kW,

(b) good beam quality M2 < 1.3,

(c) narrow spectral bandwidth < 15 GHz,

(d) percentage of output power out of spectral band < 1%,

(e) center wavelength long-term stability < 50 MHz,

(f) complete mitigation of SBS,

(g) complete mitigation of TMI.

 

Characterize the system optical bandwidth, spectral stability, beam quality, and total pump power to signal power efficiency, all at maximum power level. Demonstrate ability to span the 40-nm wavelength range required for SBC. Validate the absence of SBS and TMI at maximum power level. Perform a preliminary failure mode and effects analysis (FMEA) for the proposed design. Project manufacturability of the system, highlighting COTS versus custom components and subsystems.

PHASE III DUAL USE APPLICATIONS: Provide demonstration of a full SBC laser system. Transition the technology to a major demonstration program such as an ONR-funded Future Naval Capability (FNC) or Innovative Naval Prototype.

Although the primary applications for the improved fiber laser would be for military laser systems, fiber lasers are routinely used in applications such as laser welding and cutting. There may be certain welding and cutting applications that may be improved with higher power fiber lasers that would result from the elimination of SBS and TMI in the fiber lasers.

REFERENCES:

1.       Naderi, N. A., Dajani, I., & Flores, A. (2016). High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth. Optics letters, 41(5), 1018-1021. https://doi.org/10.1364/OL.41.001018

2.       Brilliant, N. A. (2002). Stimulated Brillouin scattering in a dual-clad fiber amplifier. JOSA B, 19(11), 2551-2557. https://doi.org/10.1364/JOSAB.19.002551

3.       Eidam, T., Wirth, C., Jauregui, C., Stutzki, F., Jansen, F., Otto, H. J., Schmidt, O., Schreiber, J. L., & Tünnermann, A. (2011). Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Optics express, 19(14), 13218-13224. https://doi.org/10.1364/OE.19.013218

4.       Augst, S. J., Goyal, A. K., Aggarwal, R. L., Fan, T. Y., & Sanchez, A. (2003). Wavelength beam combining of ytterbium fiber lasers. Optics letters, 28(5), 331-333. https://doi.org/10.1364/OL.28.000331

 

KEYWORDS: optical fiber; fiber laser; high energy laser; spectral beam combination; directed energy


** TOPIC NOTICE **

The Navy Topic above is an "unofficial" copy from the Navy Topics in the DoD 23.1 SBIR BAA. Please see the official DoD Topic website at www.defensesbirsttr.mil/SBIR-STTR/Opportunities/#announcements for any updates.

The DoD issued its Navy 23.1 SBIR Topics pre-release on January 11, 2023 which opens to receive proposals on February 8, 2023, and closes March 8, 2023 (12:00pm ET).

Direct Contact with Topic Authors: During the pre-release period (January 11, 2023 thru February 7, 2023) proposing firms have an opportunity to directly contact the Technical Point of Contact (TPOC) to ask technical questions about the specific BAA topic. Once DoD begins accepting proposals on February 8, 2023 no further direct contact between proposers and topic authors is allowed unless the Topic Author is responding to a question submitted during the Pre-release period.

SITIS Q&A System: After the pre-release period, and until February 22, 2023, (at 12:00 PM ET), proposers may submit written questions through SITIS (SBIR/STTR Interactive Topic Information System) at www.dodsbirsttr.mil/topics-app/, login and follow instructions. In SITIS, the questioner and respondent remain anonymous but all questions and answers are posted for general viewing.

Topics Search Engine: Visit the DoD Topic Search Tool at www.dodsbirsttr.mil/topics-app/ to find topics by keyword across all DoD Components participating in this BAA.

Help: If you have general questions about the DoD SBIR program, please contact the DoD SBIR Help Desk via email at [email protected]

Topic Q & A

2/10/23  Q. 1. The 15 GHz linewidth laser needs to be single frequency or not?
2. Any requirements on the SWaP?
   A. 1. The individual laser should be contained within a 15 GHz spectral bandwidth; but the technology used should be suitable such that the center wavelength of that 15 GHz bandwidth can be anywere within the (approximately) 40 nm gain bandwidth of a Ytterbium-doped fiber laser (1060 nm +/- 20 nm).

2. The intent is that the SWaP should be reduced due to the development of passive elimination of SBS. Very difficult to specify a SWaP as our SWaP considerations are from an overall system perspective. For instance if the fiber laser itself is smaller but has a higher requirement for thermal management the system SWaP may be negatively impacted. Proposer should discuss the potential for SWaP reduction of a spectrally combined HEL system that could be expected from the proposed improved fiber laser technology.


[ Return ]