Broadband Photoconductive Terahertz Focal Plane Arrays
Navy SBIR 20.2 - Topic N202-125
Office of Naval Research (ONR) - Ms. Lore-Anne Ponirakis [email protected]
Opens: June 3, 2020 - Closes: July 2, 2020 (12:00 pm ET)
N202-125 TITLE: Broadband Photoconductive Terahertz Focal Plane Arrays
RT&L FOCUS AREA(S): Network Command, Control and Communications
TECHNOLOGY AREA(S): Chem Bio Defense, Sensors, Electronics
OBJECTIVE: Develop photoconductive terahertz focal plane arrays that offer large pixel count, high dynamic range, and high speed over a broad terahertz (THz) frequency range.
DESCRIPTION: Electromagnetic waves in the THz spectral band (roughly covering the 0.1 - 3 THz frequency range) offer unique properties for chemical identification, non-destructive imaging, and remote sensing. However, existing THz devices, such as THz sources and detectors, have not yet provided all of the functionalities required to fulfill many of these applications. Although Complementary metal�oxide�semiconductor (CMOS) technologies have been offering robust solutions below 1 THz, the high-frequency portion of the THz band still lacks mature devices. For example, most of the THz imaging and spectroscopy systems utilize single-pixel detectors, which results in a severe trade-off between the measurement time and field-of-view.
To address this problem, a large pixel count, high dynamic range, high speed, and broadband THz focal plane array (THz-FPA) needs to be developed. The proposed THz-FPA can operate either as a frequency-tunable continuous-wave detector or a broadband-pulsed detector. It should be able to operate over a 1 - 3 THz frequency range, while offering above 30 dB dynamic range per pixel. It should have more than 1 kilo pixels and a frame rate of at least 1 Hz. Smart readout integrated circuits to increase the data collection efficiency and frame-rate can be investigated.
PHASE I: Demonstrate a proof-of-concept THz-FPA with at least 16 pixels. Show that each pixel of the THz-FPA meets the dynamic range and bandwidth requirements. Introduce a data readout method that can maintain the large dynamic range and broad bandwidth requirements for more than 1 kilo pixels and a frame rate of at least 1 Hz. Develop a Phase II plan that includes technology integration, test and validation with representative structures.
PHASE II: Realize the THz-FPA consisting of at least 1 kilo pixels integrated with the read-out circuits. Demonstrate the functionality of the final prototype to take THz images with more than a 30 dB dynamic range over a 1-3 THz bandwidth in less than 1 second. The prototype system will vary based on the proposed approach, but it may include hardware and software. Develop technology transition plan and business case assessment.
PHASE III DUAL USE APPLICATIONS: Broadband THz Imaging focal plane arrays enable sensors for detailed feature and frequency spectrum capture that support several DoD missions, among these are battlespace target assessment, surveillance in low-visibility conditions, and nondestructive material quality control (e.g., defects/corrosion in ship, aircraft, vehicle components), and law enforcement agencies for detection of illicit drugs and narcotics, and regulatory agencies (e.g., FDA, NIFA) for detection of toxins in drug, food, and agricultural products.
REFERENCES:
1. Tonouchi, M. �Cutting-edge terahertz technology.� Nature Photonics, 1(2),2007, pp. 97-105. https://www.nature.com/articles/nphoton.2007.3
2. Al Hadi, R., Sherry, H., Grzyb, J., Zhao, Y., Forster, W., Keller, H. M., Cathelin, A., Kaiser, A., and Pfeiffer, U. R.. �A 1 k-pixel video camera for 0.7�1.1 terahertz imaging applications in 65-nm CMOS.� IEEE Journal of Solid-State Circuits, 47(12), 2012, pp. 2999-3012. https://www.semanticscholar.org/paper/A-1-k-Pixel-Video-Camera-for-0.7�1.1-Terahertz-in-Hadi-Sherry/4794675927847b4dc49105f9e9467e05e4bdc8a4
3. Burford, N. M., & El-Shenawee, M. O. �Review of terahertz photoconductive antenna technology.� Optical Engineering, 56(1), 2017. https://www.spiedigitallibrary.org/journals/Optical-Engineering/volume-56/issue-01/010901/Review-of-terahertz-photoconductive-antenna-technology/10.1117/1.OE.56.1.010901.full?SSO=1
KEYWORDS: Broadband Terahertz, Imaging, Focal Plane Array
SITIS Q&A System. Once DoD begins accepting proposals on June 3, 2020 no further direct contact between proposers and topic authors is allowed unless the Topic Author is responding to a question submitted during the Pre-release period. However, proposers may submit written questions through SITIS at www.dodsbirsttr.mil/submissions/login, login and follow instructions. In SITIS, the questioner and respondent remain anonymous but all questions and answers are posted for general viewing. Topics Search Engine: Visit the DoD Topic Search Tool at www.dodsbirsttr.mil/topics-app/ to find topics by keyword across all DoD Components participating in this BAA.
The Navy Topic above is an "unofficial" copy from the overall DoD 20.2 SBIR BAA. Please see the official DoD DSIP Topic website at rt.cto.mil/rtl-small-business-resources/sbir-sttr/ for any updates. The DoD issued its 20.2 SBIR BAA on May 6, 2020, which opens to receive proposals on June 3, 2020, and closes July 2, 2020 at 12:00 noon ET.
Direct Contact with Topic Authors. During the pre-release period (May 6 to June 2, 2020) proposing firms have an opportunity to directly contact the Technical Point of Contact (TPOC) to ask technical questions about the specific BAA topic.
Questions should be limited to specific information related to improving the understanding of a particular topic�s requirements. Proposing firms may not ask for advice or guidance on solution approach and you may not submit additional material to the topic author. If information provided during an exchange with the topic author is deemed necessary for proposal preparation, that information will be made available to all parties through SITIS (SBIR/STTR Interactive Topic Information System). After the pre-release period, questions must be asked through the SITIS on-line system as described below.
Help: If you have general questions about DoD SBIR program, please contact the DoD SBIR Help Desk at 703-214-1333 or via email at [email protected]