High Temperature Material Coatings
Navy SBIR 2013.2 - Topic N132-146 SSP - Mr. Mark Hrbacek - [email protected] Opens: May 24, 2013 - Closes: June 26, 2013 N132-146 TITLE: High Temperature Material Coatings TECHNOLOGY AREAS: Weapons ACQUISITION PROGRAM: Trident II (D5), ACAT I RESTRICTION ON PERFORMANCE BY FOREIGN CITIZENS (i.e., those holding non-U.S. Passports): This topic is "ITAR Restricted". The information and materials provided pursuant to or resulting from this topic are restricted under the International Traffic in Arms Regulations (ITAR), 22 CFR Parts 120 - 130, which control the export of defense-related material and services, including the export of sensitive technical data. Foreign Citizens may perform work under an award resulting from this topic only if they hold the "Permanent Resident Card", or are designated as "Protected Individuals" as defined by 8 U.S.C. 1324b(a)(3). If a proposal for this topic contains participation by a foreign citizen who is not in one of the above two categories, the proposal will be rejected. OBJECTIVE: For future solid propulsion applications, develop and evaluate refractory coatings for carbon-based substrates that will survive an oxidizing environment of 1) greater than 3200 deg F for 10 minutes and 2) greater than 5,000 deg F for 1 minute. Evaluate the mechanical properties of the coating-substrate technologies and establish proof of concept in a laboratory environment and then subscale solid rocket motor firings. DESCRIPTION: The current state-of-the-art for strategic solid rocket motor and gas generator components is to use expensive, monolithic refractory metals, such as tantalum tin tungsten, or ablative carbon materials that require long-lead procurement times. A less expensive, less time consuming, and non-eroding material-design solution is desired. The technical challenge is to develop a coating that bonds well to a carbon-based substrate while having the necessary high-temperature mechanical and chemical properties to survive a solid rocket motor firing. Potential applications include solid rocket motor nozzle flame-side liners, and manifolds and valve components for hot-gas control systems. PHASE I: The contractor shall deliver a report that provides 1) details on the fabrication approach for high-temperature coating technologies for carbon-carbon and/or carbon phenolic, 2) microscopy/metallographic evaluation of the fabricated coating-substrate bond line, and 3) mechanical property evaluation of the coating-substrate bondline. Multiple candidates for high-temperature coating technologies shall be investigated for further evaluation and down selection in Phase 2 and Phase 3. PHASE II: The contractor shall deliver a report on the evaluation of multiple candidates for coating technologies in laboratory evaluations of high-temperature compatibility. The laboratory evaluations shall be conducted at temperatures greater than 3,000 deg F using a gaseous environment that mimics the oxidizing potential of solid rocket motor propellant and gas-generator propellant combustion products to investigate gas-solid interactions. The report shall include pre- and post-test microscopy/metallographic evaluation of the fabricated coating-substrate bond line. The report shall include performance evaluations and down-selection to two coating candidate technologies. PHASE III: The contractor shall deliver a report on the evaluation of coating-substrate samples that have been subjected to subscale solid rocket motor firings having a burn duration of greater than 30 seconds. The report shall include pre- and post-test microscopy/metallographic evaluation of the fabricated coating-substrate bond line. The report shall include performance evaluations and down-selection to one coating technology candidate for future evaluation and demonstration in an RDT&E Strategic Propulsion Applications Programs. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: High temperature coatings are applicable throughout aerospace including commercial launch vehicles and air-breathing propulsion. REFERENCES: 2. AIAA-2000-3559, Economical Erosion-Resistant Rhenium Coating on Carbon Substrates KEYWORDS: refractory coatings; high-temperature coatings; non-eroding coatings; solid rocket motor nozzle liners; pintle valves; hot gas manifolds; carbon-carbon substrates; carbon-phenolic substrates
|