Alternative Power Supply for Uninterruptible Power Supply (UPS) Systems
Navy SBIR 2013.2 - Topic N132-111 NAVSEA - Mr. Dean Putnam - [email protected] Opens: May 24, 2013 - Closes: June 26, 2013 N132-111 TITLE: Alternative Power Supply for Uninterruptible Power Supply (UPS) Systems TECHNOLOGY AREAS: Ground/Sea Vehicles ACQUISITION PROGRAM: PMS 400D, Aegis New Construction Program, ACAT 1D OBJECTIVE: This topic seeks innovation to develop an alternative power supply for an Uninterruptible Power Supply (UPS) system that is capable of extended operational capacity, extended shelf life, and reduced life-cycle maintenance. DESCRIPTION: The Navy is seeking innovation to increase power densities, increase endurance, and eliminate the need for additional fuel in UPS systems. Currently the best available system uses lead acid batteries (Ref 1). The lead acid battery power supply for the US Navy UPS System only provides the maximum power required for 15 minutes and reduced power for up to 45 additional minutes. Power failures during catastrophic events currently cause shipboard communication to end after about 15-45 minutes, putting people and equipment at risk for survivability and additional damage. An affordable alternative power supply with the same footprint and the capability to supply power for up to 24 hours is needed for shipboard operations. The technical challenges for a useful alternative power supply for shipboard UPS applications are the ability to resist degradation due to repeated cycling of the system, the ability to continue operation in the presence of salt and other ambient air contaminates, the ability to supply power within specified time constraints, and the ability to be easily recharged onsite. The current lead acid battery backup system has extensive maintenance requirements and poses a safety and health hazard (Ref 2). Eliminating lead acid batteries will reduce costs associated with hazardous waste handling requirements for maintenance and storage of the lead acid batteries A significant acquisition priority is replacement of lead acid batteries with an advanced technology that is capable of providing longer full power operation of the shipboard internal communication system during a power outage, while also eliminating the need for hazardous waste handling of lead acid batteries. The goal is an alternative power supply that is a comparatively priced, high performance system that provides 5-50 kWh, 24 volt, 48 volt and 120 volt DC output for use in US Navy UPS systems that meets or exceeds all form, fit, and functional requirements of the current lead acid battery powered UPS system. Emerging technologies that may be able to effectively replace the lead acid battery UPS power supply could be new and improved battery technologies, fuel cell technologies, or hybrid combinations of each. PHASE I: The company will develop concepts for an improved Alternative Power Supply for Uninterruptible Power Supply (UPS) Systems that meet the requirements described above. The company will demonstrate the feasibility of the concepts in meeting Navy needs and will establish that the concepts can be feasibly developed into a useful product for the Navy. Feasibility will be established by analysis of system energy density, power density, size, weight, start-up times, anticipated maintenance requirements, and ability to withstand a shipboard environment. The small business will provide a Phase II development plan that addresses technical risk reduction and provides performance goals and key technical milestones. PHASE II: Based on the results of Phase I and the Phase II development plan, the company will develop a prototype UPS power supply for evaluation. The prototype will be evaluated to determine its ability to meet the performance goals defined in the Phase II development plan and Navy requirements for UPS Systems. The small business will demonstrate proposed installation, maintenance, repair, and recharging methods. The company will develop a cost benefit analysis, perform testing and validation, and prepare a Phase III development plan to transition the technology to Navy use. PHASE III: The company will be expected to support the Navy in transitioning the technology for Navy use. The company will develop an UPS Systems according to the Phase II development plan for evaluation to determine its compatibility for Navy ships. The system for shipboard use will be installed and evaluated on a DDG-51 Class destroyer. The company will support the Navy for test and validation to certify and qualify the system for Navy use. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: The potential for commercial application and dual use includes all commercial and military marine applications that use lead acid batteries within Uninterruptible Power Supply systems to provide power redundancy of vital electrical systems in the event of power failure. Cruise liners, commercial shipping companies, and the offshore oil and mineral industry could also benefit from this technology. REFERENCES: 2. Barsali, Stefano and Massimo Ceraolo, "Dynamical Models of Lead-Acid Batteries: Implementation Issues" IEEE Transactions on Energy Conversion, Vol. 17, No. 1, March 2002, http://ebookbrowse.com/dynamical-models-of-lead-acid-batteries-implementation-issues-pdf-d219112275 3. Additional reference for building a better battery is available at -- http://batteryuniversity.com/learn/article/whats_the_best_battery KEYWORDS: replacing lead acid batteries; increasing power densities; improving uninterruptible power supply; alternate power supply for shipboard applications; improving battery chemistry to extend shelf-life; reduced battery maintenance
|