Radar Imaging Guidance
Navy SBIR 2013.2 - Topic N132-107 NAVAIR - Ms. Donna Moore - [email protected] Opens: May 24, 2013 - Closes: June 26, 2013 N132-107 TITLE: Radar Imaging Guidance TECHNOLOGY AREAS: Sensors, Weapons ACQUISITION PROGRAM: PMA 280 RESTRICTION ON PERFORMANCE BY FOREIGN CITIZENS (i.e., those holding non-U.S. Passports): This topic is "ITAR Restricted". The information and materials provided pursuant to or resulting from this topic are restricted under the International Traffic in Arms Regulations (ITAR), 22 CFR Parts 120 - 130, which control the export of defense-related material and services, including the export of sensitive technical data. Foreign Citizens may perform work under an award resulting from this topic only if they hold the "Permanent Resident Card", or are designated as "Protected Individuals" as defined by 8 U.S.C. 1324b(a)(3). If a proposal for this topic contains participation by a foreign citizen who is not in one of the above two categories, the proposal will be rejected. OBJECTIVE: Develop a radar algorithm to allow simultaneous tracking and imaging for Pulse Doppler radar systems. DESCRIPTION: Future radar guided precision munitions and radar sensor suites would benefit from the ability to use radar tracking data developed from Moving Target Indication (MTI) detections and high resolution imaging waveforms for Automatic Target Recognition (ATR) on High Range Resolution (HRR), Synthetic Aperture Radar (SAR), and Inverse Synthetic Aperture Radar (ISAR) images. Currently radar seekers must take time away from the tracking function to image the target. This causes the quality of the track information to be degraded. The time required to generate radar images varies as a function of wavelength and radar sensor speed and angular rate, and can vary from a few seconds to tens of seconds depending on the system application. For radar seekers utilizing radar Intelligence, Surveillance, and Reconnaissance (ISR) of highly valued moving targets in dynamic environments, losing track data for several seconds could cause a loss of target track. Waveforms and algorithms are needed that can simultaneously develop tracking data from the high resolution ATR quality target images. PHASE I: Develop and demonstrate the feasibility of a concept for Radar Imaging Guidance. Design the system architecture content, waveform and high level algorithm. PHASE II: Develop and demonstrate a prototype Radar Imaging Guidance system on an existing seeker testbed. Develop a PC based simulation that exercises the algorithms. PHASE III: Finalize the technology and transition to the appropriate platforms and the Fleet. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: Simultaneous MTI and radar imaging can benefit all-weather border control and perimeter surveillance applications. REFERENCES: 2. Nathanson, F.E. (1969). Radar Design Principles: Signal Processing and the Environment. New York: McGraw-Hill Book Company. KEYWORDS: Radar Imaging, Radar Signal Processing, Synthetic Aperture Radar (SAR), Inverse Synthetic Aperture Radar (ISAR), Radar Track, Track Fusion
|