Plateau Burning Composite Propellant with Minimized Temperature Sensitivity
Navy SBIR 2013.2 - Topic N132-105 NAVAIR - Ms. Donna Moore - [email protected] Opens: May 24, 2013 - Closes: June 26, 2013 N132-105 TITLE: Plateau Burning Composite Propellant with Minimized Temperature Sensitivity TECHNOLOGY AREAS: Materials/Processes, Battlespace, Human Systems ACQUISITION PROGRAM: PMA 201 RESTRICTION ON PERFORMANCE BY FOREIGN CITIZENS (i.e., those holding non-U.S. Passports): This topic is "ITAR Restricted". The information and materials provided pursuant to or resulting from this topic are restricted under the International Traffic in Arms Regulations (ITAR), 22 CFR Parts 120 - 130, which control the export of defense-related material and services, including the export of sensitive technical data. Foreign Citizens may perform work under an award resulting from this topic only if they hold the "Permanent Resident Card", or are designated as "Protected Individuals" as defined by 8 U.S.C. 1324b(a)(3). If a proposal for this topic contains participation by a foreign citizen who is not in one of the above two categories, the proposal will be rejected. OBJECTIVE: Develop a composite propellant which has an extended plateau region in its burning rate vs. pressure relationship curve, as well as minimized variation in ballistic performance as a function of temperature change. DESCRIPTION: Double base (nitrocellulose & nitroglycerine based) propellants widely used in Navy aircraft ejection seat systems experience degradation and depletion of the stabilizers used in the formulation over time with exposure to high operational and storage temperatures. This degradation results in safety risks due to the possibility of inadvertent spontaneous deflagration of the propellant. Current composite propellants typically do not have a pronounced plateau in their burning rate vs. pressure curves, and have a wider variation in performance with changes in temperature as compared to double base propellants. An innovative composite propellant to replace the current double based propellants used must be nitrate ester free and thermally stable across an operating temperature range from -65�F to +200�F. Ideally the propellant burning rate in the plateau region at ambient temperature would be approximately 1.0 inches per second at 2000 pounds per square inch (psi), followed by a negative slope in the burning rate curve, extending through at least 4500 to 5000 psi, and dropping by at least 0.4 inches per second. The temperature sensitivity coefficient (Sigma sub p) would ideally be sp = 0.1 %/ K or less. Such a composite propellant would have performance characteristics similar to a plateau burning double base propellant, currently in use in Naval ejection seat systems, but without the limited life inherent in propellants containing nitrate esters. This formulation would be developed and validated through adjustments to the propellant composition, followed by burning rate testing to demonstrate the effects of adjustments made. The burning rates of the final formulation supplied to the Navy will be measured at -65F, ambient temperature, and +200F across the pressure range of 500 to 5000 PSI. The formulation must contain ingredients which have been tested to demonstrate compatibility with each other. Mechanical properties testing, as well as basic propellant safety and characterization tests in accordance with NAVSEAINST 8020.5C are to be conducted, so a Department of Defense Interim Hazard Classification can be obtained for the propellant. The tests would be conducted on zero-time and propellant samples aged for 64 days at 200F, and the results supplied to the Navy. PHASE I: Determine the feasibility of the composite propellant developed in accordance with the identified parameters. PHASE II: Further develop and demonstrate through testing, a formulation which meets the performance objectives for burning rate and temperature sensitivity across the pressure range on zero-time and aged propellant samples. Characterization tests, scale up of the propellant manufacturing process, and manufacture of a quantity of propellant samples, one to two kilograms, for delivery to the Navy would also be performed in Phase II. PHASE III: Conduct the complete propellant characterization testing per NAVSEAINST 8020.5C and manufacture and transition a quantity of propellant samples for delivery to the Navy for testing. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: A composite propellant developed under this effort could be used in commercial mining, blasting, oil and gas exploration cartridge applications where consistent performance is required across a wide variation in temperature. REFERENCES: 2. Steinz, J. A., Stang, P. L., & Summerfield, M. (1967). Effects of Oxidizer Particle Size on Composite Solid Propellant Burning: Normal Burning, Plateau Burning and Intermediate Pressure Extinction (Aerospace and Mechanial Sciences Report No. 810). Princeton, NJ: Department of Aerospace and Mechanical Sciences, Princeton University. Retrieved from http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA952028 3. Garman, N. S., Picard, J. P., Polakoski, S., & Murphy, J. M. (1973). Prediction of Safe Life of Propellants (Technical Report 4505). Dover, NJ: Picatinny Arsenal. Retrieved from http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0763879 4. Peletski, C. (2000). Qualification and Final (Type) Qualification Procedures for Navy Explosives (NAVSEAINST 8020.5c). Arlington, VA: Navy Insensitive Munitions Office. Retrieved from http://engineers.ihs.com/document/abstract/HDFFABAAAAAAAAAA KEYWORDS: Combustion; Composite Propellant; Burning Rate; Plateau; Temperature Sensitivity
|