Advanced Wheel Bearing for High Acceleration and Deceleration Applications
Navy SBIR 2013.2 - Topic N132-103 NAVAIR - Ms. Donna Moore - [email protected] Opens: May 24, 2013 - Closes: June 26, 2013 N132-103 TITLE: Advanced Wheel Bearing for High Acceleration and Deceleration Applications TECHNOLOGY AREAS: Materials/Processes ACQUISITION PROGRAM: PMA 251 RESTRICTION ON PERFORMANCE BY FOREIGN CITIZENS (i.e., those holding non-U.S. Passports): This topic is "ITAR Restricted". The information and materials provided pursuant to or resulting from this topic are restricted under the International Traffic in Arms Regulations (ITAR), 22 CFR Parts 120 - 130, which control the export of defense-related material and services, including the export of sensitive technical data. Foreign Citizens may perform work under an award resulting from this topic only if they hold the "Permanent Resident Card", or are designated as "Protected Individuals" as defined by 8 U.S.C. 1324b(a)(3). If a proposal for this topic contains participation by a foreign citizen who is not in one of the above two categories, the proposal will be rejected. OBJECTIVE: Develop a new wheel bearing for use in a highly loaded moving shuttle subjected to high acceleration and deceleration rates to reduce the maintenance and other resources required to maintain bearing components. DESCRIPTION: There is a need for development of an advanced wheel bearing with long life under high loads, and high acceleration/deceleration rates. Currently, open and sealed wheel bearings are utilized, but both require greasing as frequently as every 25 launches. The high periodicity of greasing creates both environmental and operational burdens. Life considerations should be paramount; graceful degradation, low maintenance and low replacement frequency are ideal. The proposed wheel bearing should not require periodic greasing. Proposed wheel bearings should have long life without exhibiting signs of degradation or loss of grease which would affect performance. Any bearing failure must remain contained to prevent having a Foreign Object Damage (FOD) hazard. The wheel bearing technology should take into account Electromagnetic (EMALS) and Steam catapult requirements. The Electromagnetic armature has 6 wheels and the Steam catapult shuttle has 8 wheels in a vertical configuration on a horizontal axis. Approximate requirements for the EMALS and Steam Catapult applications: Application acceleration: 0 to 180 knots (kts), within 300 feet (ft) PHASE I: Develop and demonstrate feasibility of a long life wheel bearing technology that meets the key requirements and technical issues referred to in Description. PHASE II: Design and develop a prototype based on the Phase I concept. Demonstrate the prototype performance during full speed launches with no loads on catapult test sites. PHASE III: Finalize testing and transition the technology to the appropriate platforms and the Fleet. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: This wheel bearing development may be applied to many applications in the commercial sector as well as for other military agencies. This technology is important to the future of locomotives, aircraft, spacecraft, and electrical vehicles. REFERENCES: 2. Harris, T.A., & Kotzalas, M.N. (2006). Advanced Concepts of Bearing Technology (5th ed.). Boca Raton: CRC Press. KEYWORDS: Wear, Wheel Bearing, Dynamic Friction, Static Friction, Aircraft Launch Catapult, Bearings
|