Gallium Nitride Based Active Electronically Scanned Array (AESA) Technology for High Altitude Periscope Detection
Navy SBIR 2013.2 - Topic N132-095 NAVAIR - Ms. Donna Moore - [email protected] Opens: May 24, 2013 - Closes: June 26, 2013 N132-095 TITLE: Gallium Nitride Based Active Electronically Scanned Array (AESA) Technology for High Altitude Periscope Detection TECHNOLOGY AREAS: Air Platform, Electronics ACQUISITION PROGRAM: PMA 264 RESTRICTION ON PERFORMANCE BY FOREIGN CITIZENS (i.e., those holding non-U.S. Passports): This topic is "ITAR Restricted". The information and materials provided pursuant to or resulting from this topic are restricted under the International Traffic in Arms Regulations (ITAR), 22 CFR Parts 120 - 130, which control the export of defense-related material and services, including the export of sensitive technical data. Foreign Citizens may perform work under an award resulting from this topic only if they hold the "Permanent Resident Card", or are designated as "Protected Individuals" as defined by 8 U.S.C. 1324b(a)(3). If a proposal for this topic contains participation by a foreign citizen who is not in one of the above two categories, the proposal will be rejected. OBJECTIVE: Develop an innovative single integrated Gallium Nitride (GaN) transmit and receive (T/R) Monolithic Microwave Integrated Circuit (MMIC) system, and the corresponding array technology that enables a low cost, high performance, thin, efficient, low size, weight and power (SWaP), and high altitude submarine periscope detection capability. DESCRIPTION: Commercial processes routinely produce GaN High Power Amplifiers (HPA), High Power Switches (HPS), and Low Noise Amplifiers (LNAs) as separate packaged parts. A main objective is to design a compact T/R MMIC system that performs all these functions in one small package to enable a very thin flat 2D Active Electronically Scanned Array (AESA) at C-band. GaN is capable of producing a fully integrated T/R MMIC, but has to be done in concert with the design restrictions of flat AESA approaches. In comparison to Gallium Arsenide, Gallium Nitride HPAs can operate at higher voltage and junction temperatures. The higher voltage enables higher efficiencies which along with higher junction temperatures and higher thermal conductivity enable easier thermal management design. Current GaN AESA thermal designs enable over 2 watts per square inch average transmit power relatively independent of frequency. An innovative and integrated GaN MMIC and array technology enables a thin, efficient, low SWaP, low cost, high performance radar antenna that can then be easily installed on a large number of space constrained platforms. PHASE I: Develop and prove feasibility of a GaN T/R MMIC based 2D C-band AESA for high altitude periscope detection. PHASE II: Further develop and demonstrate a prototype of the system developed in Phase I. PHASE III: Finalize testing and transition the technology to the appropriate platforms and the Fleet. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: The technology is directly applicable to both commercial communication/data link systems and radar systems. REFERENCES: 2. Palmour, J.W., Hallin, C., Burk, A., Radulescu, F., Namishia, D., Hagleitner, H., Duc, J., Pribble, B., Sheppard, S.T., Barner, J.B., & Milligan, J. (2010). 100 mm GaN-on-SiC RF MMIC Technology. Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International, 1226-1229. doi: 10.1109/MWSYM.2010.5515973 KEYWORDS: Radar, Phased Array, Gallium Nitride, Active Electronically Scanned Array, T/R Modules, Periscope Detection
|