Mask-on Hypoxia Training Device
Navy SBIR 2013.2 - Topic N132-093 NAVAIR - Ms. Donna Moore - [email protected] Opens: May 24, 2013 - Closes: June 26, 2013 N132-093 TITLE: Mask-on Hypoxia Training Device TECHNOLOGY AREAS: Air Platform, Human Systems ACQUISITION PROGRAM: PMA 205 OBJECTIVE: Design and develop a mobile-sized hypoxia training device capable of delivering continuous pressure-on-demand airflow to an aviator’s oxygen mask with varying oxygen levels simulating sea level (ambient air) to 30,000 ft. DESCRIPTION: Annual hypoxia training, required for all ejection seat equipped aircraft aviators, addresses both recognition of symptoms and recovery procedures to mitigate the risks associated with hypoxia incidents that occur each year. The training is currently accomplished either by the command’s Aeromedical Safety Officer in the fleet simulators or at the local Aviation Survival Training Center. The Reduced Oxygen Breathing Device, 2nd Generation (ROBD2) is currently being used to simulate altitude exposure for hypoxia training. The ROBD2 device has several limitations including the lack of mobility due to the need for large gas bottles, high maintenance requirements including filter replacements, calibration and gas bottle replacement, and delivery of breathing air at 50 Liters Per Minute (LPM) rather than a pressure-demand system, which increases the risk of generating air hunger. A small, portable system (no larger than 18 inches by 18 inches and no heavier than 25 pounds) capable of pressure-demand airflow which can easily integrate with the current instructor operator station software is envisioned. The system should have biometric monitoring capability and interface with standard USN oxygen equipment. The standard USN part used to connect the oxygen mask to a regulator is the Connector, Oxygen Mask, MS27796 (National Stock Number: 1660007302247). This low cost, low maintenance and fully mobile device free of gas bottle connections would significantly improve and expand the capability, efficiency and quality of training provided to the fleet. PHASE I: Design, develop and demonstrate proof-of-concept of proposed technology to deliver a mobile-sized hypoxia training device. PHASE II: Further develop and demonstrate a prototype mobile-sized hypoxia training device. PHASE III: Complete acceptance testing to validate requirements and transition the technology to U.S. Navy and other military and private interests. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: Any aviation organization that conducts hypoxia training as part of the Federal Aviation Administration/Department of Defense (FAA/DoD) requirements could utilize this technology to train individuals. REFERENCES: 2. Harding, R. & Mills, F. (1983). Problems of altitude I: Hypoxia and hyperventilation. British Medical Journal, 286, 1408-1410. 3. Legg, S., Hill, S., Mundel, T., Gilbey, A., Schlader, Z., & Raman, A. (2012). Could mild hypoxia impair pilot decision making in emergencies? Work: A Journal of Prevention, Assessment, and Rehabilitation, 41(1), 198-203. 4. Slobodnik, B., Wallick, M., & Chimiak, J. (1991). Effectiveness of oxygen-nitrogen gas mixtures in inducing hypoxia at 1 ATA. Navy Experimental Diving Unit. http://www.stormingmedia.us/31/3187/A318732.html 5. Toff, W., Jones, C., Ford, I., Pearse, R., Watson, H., Watt, S., Ross, J., Gradwell, D., Batchelor, A., Abramns, K., Meijers, J., Goodall, A., & Greaves, M. (2006). Effect of hypobaric hypoxia, simulating conditions during long-haul air travel, on coagulation, fibrinolysis, platelet function, and endothelial activation. Journal of American Medical Association, 295(19), 2251-2262. 6. Westerman, R. A. (2004). Hypoxia familiarisation training by the reduced oxygen breathing method. Aviation Medicine, 5, 11-15. http://www.defence.gov.au/health/infocentre/journals/ADFHJ_apr04/ADFHealth_5_1_11-15.pdf 7. Carey, C. T. A Brief History of US Military Aviation Oxygen Breathing Systems. http://webs.lanset.com/aeolusaero/Articles/A_Brief_History_of_US_Military_Aviation_Oxygen_Breathing_Systems.pdf KEYWORDS: Mobile Hypoxia Training System; Pressure-demand Airflow; Oxygen Mask; Simulated Training; Physiological Monitoring; Symptom Recognition Training
|